

Index

S.No. Content Page No.

1. INTRODUCTION

1

2. LITERATURE REVIEW

4

3. STEGANOGRAPHY AND LSB Method

13

4. PROPOSED WORK

19

5. IMPLEMENTATION DETAILS

27

6. CONCLUSION AND FUTURE WORK 63

7. REFERENCES

65

Page | 1

Chapter - 1

INTRODUCTION

1.1 Introduction

In the current scenario of the world, the technologies have advanced so much that most of

the people prefer working with the internet as the main medium to transfer data or messages

from one location to another in the world. There are various possible ways to transmit data

through internet: via e-mails, chats, etc. The data transition is made very fast, simple, efficient

and accurate via the internet.

However, the main problems while sending the data over the internet is security threat it

faces i.e. the personal or confidential data can be stolen or hacked in many ways. Therefore it

becomes important to consider the data security, as it is one of the most important factors that

need attention in the process of data transferring.

Data security means protecting the data from unauthorized users or hackers and providing

high security to stop or prevent data modification. This area of data security has gained much

more attention over the last few years of period of time due to the heavy increase in data transfer

rate through the internet.

In order to improve the features of data security during data transfers via the internet,

many techniques have been developed like: Cryptography, digital watermarking and

Steganography. While Cryptography is a simply technique to conceal information by encrypting

the data to cipher texts and transmitting it to the receiver using an specific and unknown key,

Steganography provides further more security by hiding the special or cipher text into an

invisible image or any other formats.

Cryptography and steganography are general, well known and widely used techniques that

change the information (messages) in order to hide or cipher its existence. These techniques are

Page | 2

being in use in a lots of applications in computer science and other related fields: they are used to

protect various type of messages like e-mail, credit card information, corporate data, etc.

More specifically, steganography is the art and science of data communication in a way which

hides the presence of the communication. A steganographic system thus embeds hidden content

inside a media so as not to present an eavesdropper’s suspicion. As an example, it is possible to

hide a text behind an image or an audio file.

On the other hand, cryptography is the study of techniques using mathematics related to issues of

information security like confidentiality, data security as integrity, authentication, and data origin

authentication.

Cryptography protects data by converting it into an unreadable format. It is important to achieve

confidential and secure transmission over a network which is public. The actual text, or plaintext,

is manipulated into a coded text equivalent called ciphertext via an encryption algorithm.

Only those receipiantes who have a secret key can decipher/convert (decrypt) the ciphertext into

plaintext or actual text. Cryptography systems can be broadly categorized into symmetric-key

systems which use a single key (i.e., a password) that both the sender and the receiver have, and

public-key systems that use two separate keys, a public key known to everyone and a private key

that only a particular recipient of messages uses[12].

1.2 Proposed Study

 To hide the message or a secret data into an image which acts as a cover medium.

 The primary motivation of my current work is to increase efficiency and accuracy of the

stego image.

 To develop a software system(Java Based) for stegnography of images. The system will

be able to hide the message within image and will be able to retrieve the message back

from the image.

Page | 3

 The Software system used LSB method for stegnography and encryption using Java

APIs.

We investigated the methods of stegnography with the special emphasis of method of LSB. Also

we developed a Java based system to hide the message inside an image and to retrieve the

information back from the information.

1.3 Outline of The chapter

In chapter 1, the general overview is given with proposed study and outline of thesis.

Chapter 2 introduces detailed literature review.

Chapter 3 discussees about the cryptography and stegnography with its methods. Chapter 4

describes efficiency considerations and its difference with proposed method. The chapter also

describes details about technology used in proposed tool.

In Chapter 5, screenshots with details of implementation is given. In chapter 6 conclusion and

future work is given. At last references are shown.

Page | 4

Chapter- 2

LITERATURE REVIEW

The word cryptography is made by two Greek words which mean “secret writing”. Cryptography

is the technique of scrambling the actual text by rearranging, altering or substituting the original

text, arranging it in a different unreadable format which is not visible.

Cryptography is an effective way to protect the information that is transmitting through the

network communication paths (Bishop, 2005).

Steganography in Greek means "covered writing". Steganography is the process of

hiding the one information into other sources of information like text, image or audio file, so that

it is not visible to the natural view.

There are varieties of steganographic techniques available to hide the data depending upon the

carriers we use. Steganography and cryptography both are used for the purpose of sending the

data securely. The same approach is followed in Steganography as in cryptography like

encryption, decryption and secret key. In steganography the message is kept secret without any

changes but in cryptography the original content of the message is differed in different stages

like encryption and decryption. Steganography supports different types of digital formats that are

used for hiding the data. These files are known as carriers. Depending upon the redundancy of

the object the suitable formats are used. Redundancy is the process of providing better accuracy

for the object that is used for display by the bits of object. The main file formats that are used for

steganography are Text, images, audio, video, protocol (Morkel, 2005).

Cryptology is the science that deals about cryptography and cryptanalysis. Cryptography is the

approach of sending the messages secretly and securely to the destination. Cryptanalysis is the

method of obtaining the embedded messages into original texts(Whitman, 2007).

C.P.Sumathiet. al (2013) describes, While steganography can be achieved using any cover

media, we are concerned with hiding data in digital images. The features expected of a stego-

medium are imperceptibility and robustness, so that the secret message is known only to the

intended receiver and also the stego-medium being able to withstand attacks from intruders. The

Page | 5

amount of secret message embedded should be such that it doesn’t reduce the quality of the stego

image. The goal of steganography is to embed secret data into a cover in such a way that no one

apart from the sender and intended recipients even realizes there is secret data. A few key

properties that must be considered when creating a digital data hiding system are

 Imperceptibility: Imperceptibility is the property in which a person should be unable to

distinguish the original and the stego-image.

 Embedding Capacity: Refers to the amount of secret information that can be embedded

without degradation of the quality of the image.

 Robustness: Refers to the degree of difficulty required to destroy embedded information

without destroying the cover image.

MamtaJuneja, and Dr. Parvinder S. Sandhu(2013), proposed an improved LSB(least

Significant bit) based Steganography technique for images imparting better information security .

They presents an embedding algorithm for hiding encrypted messages in nonadjacent and

random pixel locations in edges and smooth areas of images. It first encrypts the secret message,

and detects edges in the cover-image using improved edge detection filter. Message bits are

then, embedded in the least significant byte of randomly selected edge area pixels and 1-3-4

LSBs of red, green, blue components respectively across randomly selected pixels across smooth

area of image.

M.Rajkamal And B.S.E.Zoraida(2014), developed a new technique of image steganography

inside the embedding the encrypted Data file or message using Hash-LSB with RSA algorithm

for providing more security to data as well as our data hiding method. The developed technique

uses a hash function to generate a pattern for hiding data bits into LSB of RGB pixel values of

the carry image. This technique makes sure that the data has been encrypted before embedding it

intoa carry image. Embedded-text in images usually carries important messages about the

content.

LSB based technique changes pixel value by ± 1 or leave them unchanged. The goal of a

steganalyst is to estimate if I has hidden data. (I - Index set that denote the mean subtracted cover

Page | 6

image) Substitution Based Steganographic Methods listed in chronological order starting from

latest. Table 2.1

S.No. Author Year Method Used

1. Mamta Juneja et. al.[4] 2013 Two component based LSB

2. P.Thiyagarajan et. al [5] 2013 Scheme using 3D geometric

models.

3. Shamim Ahmed Laskar et. al[6] 2013 Data embedding in the red plane

of the image selected using

PRNG

4. S.Shanmuga Priya et. al [7] 2012 Embedding done in the sharper

edge regions using a threshold

5. B.Sharmila et. al. [8] 2012 Edge regions selected for

embedding using LSBMR (LSB

Matching Revisited)

6. Shweta Singhal et. al [9] 2011 1 byte of blue factor of pixels are

replaced with secret bits.

7. Fahim Irfan Alam et al [10] 2011 Noise filtering before embedding

combined with encryption.

8. Rajkumar Yadav et al. [11] 2011 A novel approach for image

steganography In spatial domain

using last two bits of pixel value

9. M.B.Ould MEDENI et. al. [12] 2010 A novel steganographic method

based on Pixel Value

Differencing (PVD)

10. Weiqi Luo et. al. [13] 2010 An Edge adaptive scheme for

Region selection and LSBMR for

data

11. C.H.Yang et. al. [14] 2010 Improving histogram based

reversible data hiding by

Page | 7

interleaving predictions

(512 x 512 Image)

12. Venkata Abhiram.M et. al. [15] 2009 Pixel Intensity based

steganography with improved

randomness.

13. G.Sahoo et. al. [16] 2009 Data embedded in static &

dynamic portions after place

analysis

14. Jasvinder Kaur et. al. [17] 2009 Embedding using digital

operations are compared

15. Hao-Tian et. al. [18] 2009 Steganography in 3D geometrics

& images using adjacent Bin

Mapping (LSB+ algorithm)

16. Bawankar Chetan.D et. al. [19] 2009 Steganography Algorithm using

Pattern Matching with External

Hardware

17. Tanmay Bhattacharya et. al. [20] 2009 A hiding technique using bit

level cross fold transposition and

genetic algorithm

18. Chin-Chen Chang et. al. [21] 2004 Code word grouping - palette

generation algorithm Encoded

codeword is modified to hide

secret message

19. R.Chandramouli et. al. [22] 2001 Adaptive Steganography

In Hemalatha.S et.al’s [23] paper, the authors propose a method that uses two gray scale images

of size 128 x 128 that are used as secret images and embedding is done in RGB and YCbCr

domains. The quality of stego images are good in RGB domain by comparing the PSNR values.

The authors have used Integer Wavelet Transform (IWT) to hide secret images in the color cover

Page | 8

image. The authors have compared the PSNR values and image quality when embedding is done

in the RGB and YCbCr domains.

In another article by Hemalatha .S et. al. [24] Integer Wavelet Transform (IWT) have been

suggested to hide multiple secret images and keys in a color cover image which is more efficient.

The cover image is represented in the YCbCr color space. Two keys are obtained, encrypted and

hidden in the cover image using IWT.

In Keith.L. Haynes ’s article [25] the author studies the use of image steganography to breach an

organization’s physical and cyber defences. The proposed method utilizes computer vision and

machine learning techniques to produce messages that are undetectable and if intercepted cannot

be decrypted without key compromise. To avoid detection DWT (Discrete Wavelet Transform)

is used.

In S.Arivazhagan et. al.’s work [26] the authors propose a method that works in the transform

domain and attempts to extract the secret almost as same as the embedded one, maintaining

minimal changes to cover image by using techniques like median maintenance, offset &

quantization.

A modified approach for embedding colour images within colour images is proposed and it

overcomes the limitations in embedding. Arnold Transform is applied on the secret image to

increase robustness. This transformed image is then split into the three colour planes R, G, B and

are subjected to DWT individually, converted to bit stream and then concatenated to be

embedded in the cover image which is also subjected to DWT.

In Anindya Sarkar et. al.’s paper [27] the authors propose a Matrix Embedding with Repeat

Accumulate (ME-RA) based steganography in which the host coefficients are minimally

perturbed such that the transmitted bits fall in a coset of a linear code, with the syndrome

conveying the hidden bits.

Page | 9

In Prosanta Gope et. al.’s article [28], the authors introduce an enhanced JPEG steganography

along with a suitable encryption methodology using a symmetric key cryptographic algorithm.

In Po-Chyi et.al.’s article [29] the authors compare the advantage of embedding in JPEG 2000

images with the previous approach of embedding in JPEG images. Most of the steganographic

methods are based on JPEG because as a block DCT codec JPEG lends itself a good candidate

for information hiding due to its fixed block structure.

In Hideki Noda et.al.’s paper [30] the authors propose a method that is based on a seamless

integration of JPEG2000 lossy compression scheme and bit-plane complexity segmentation

(BPCS) steganography. In bit-plane decomposition an n bit image is decomposed into a set of n

binary images by bit slicing operations, combined with replacing binary data in LSB bit planes

with secret data.

In Tomas Filler et. al.’s work [31], the authors propose a practical methodology for minimizing

additive distortion in steganography with general embedding operation which is more flexible

and easy.

In Jessica Fridrich et.al.’s research paper [32] the authors propose a reversible embedding

scheme for VQ-compressed images that is based on side matching and relocation. The new

method achieves reversibility without using the location map. Even a tiny distortion of the

original content is not applicable in some sensitive applications such as military, medical / fine

art data.

Therefore the value of reversible methods of steganography is increasing. VQ (Vector

Quantization) is a popular compression technique because of its simple encoding and decoding

procedures. To achieve better imperceptibility the codebook is partitioned into several clusters

before embedding. The input needed will be a VQ compressed image, a stream of secret bits, a

super codebook SC, clusters of the super codebook SC and multiple hit maps.

Page | 10

The output will be a VQ stego image. Block X in the cover image will fall into one of the three

following cases. If X is equal to the ith codeword of Go, the embedding process is invoked. If X

is equal to the ith codeword of G1, no secret bit can be embedded and a compensation procedure

is needed to avoid conflicting with case 1.

If X does not belong to G0 U G1, no secret bit can be embedded and X is skipped. Secret bits

can be embedded only in case 1.

In Chin-Chen Chang et.al.’s article [33] a new approach to wet paper codes using random linear

codes of small co-dimension is used which improves embedding efficiency is proposed.

To prevent from attack, the selection channel should not be publicly available even in any partial

form. A possible remedy is to select it according to some side information that is in principle

unavailable to the attacker (e.g.) random or that cannot be well estimated from the stego image.

Steganography with non shared selection channels requires codes for memories with defective

cells also called wet paper codes. This paper provides a new tool for steganography a coding

method that empowers the steganographer with the ability to use arbitrary selection channels

while substantially decreasing the number of embedding changes.

The algorithm combines wet paper codes with matrix embedding arbitrary selection channels and

improved embedding efficiency using random linear codes of small co-dimension.

In Zhicheng Ni et.al.’s article [34] the authors present a lossless data hiding which is robust

against JPEG / JPEG 2000 compression. The image is split into 8 x 8 blocks and each block is

split into two subsets (A, B).

For each block the difference value _ is calculated where _ is the arithmetic average of

differences of pixel pairs within the block. This _ is selected as a robust quantity for embedding

the information bit. Each bit of the secret message is associated with a group of pixels eg. A

block in an image.

Page | 11

The bit embedding strategy used is as follows, If _ is located within a threshold & to embed bit

1, shift _ to right/left beyond a threshold by adding/subtracting a fixed number from each pixel

value within one subset.

To embed 0, the block is intact. If _ is located outside the threshold, always embed 1 thus

shifting the value _ away beyond a threshold. Then error correction code is applied.

Table 2.2 Statistical Steganographic Methods in chronological order starting from latest

S.No. Author Year Method Used

1. Tomas Filler et. al. [31] 2010 Additive distortion function in

Steganography using Syndrome

Trellis codes

2. Jessica Fridrich et. al. [32] 2006 Matrix embedding with wet paper

codes

3. Chin-Chen Chang et. al. [33] 2006 Reversible embedding scheme for

VQ compressed images based on

side matching and relocation uses

location map.

4. Zhicheng Ni et. al.[34] 2004 Lossless Data Hiding

In M.B.Ould MEDENI et.al.’s article [35], the authors use error correcting codes in

steganographic protocols. An optimal code is one that makes most of the maximum embeddable

(MLE). The method referred to as matrix encoding requires the sender and recipient to agree in

advance on a parity check matrix H.

The cover medium is processed to extract a sequence of symbols _, which is modified into s to

embed the message m, s is sometimes called the stegodata, and modifications on s are translated

on the cover-medium to obtain the stego-medium. Relation between steganographic algorithms

and error correcting codes are discussed.

Page | 12

In D.P.Gaikwad et. al.’s paper [36]the authors propose image restoration technique in

steganography. The image is blurred before hiding the message image using special point spread

function and randomly generated key. Sequential LSB embedding in the R plane is done in this

project. The number of rows and columns of the message image is encrypted in the first row of

the cover image.

Before inserting, the original message image is blurred using the specific PSF (Point Spread

Function). The parameters used for blurring with PSF are used as keys during deblurring.

The secret key values are sent through a secure channel (Tunnelling). The secret image is

recovered using the two keys and a third key, which is randomly generated and depends on the

content of the hiding message.

Table 2.3 Distortion Steganographic Methods in chronological order starting from latest

S.No. Author Year Method Used

1. M.B.Ould MEDENI et. al. [35] 2010 Use of error correcting codes in

steganography

2. D.P.Gaikwad et. al. [36] 2010 Image blurring with sequential

LSB embedding

Page | 13

Chapter – 3

STEGANOGRAPHY AND LSB Method

3.1 Introduction

The word steganography is derived from the Greek words “stegos” meaning “cover” and

“grafia” meaning “writing” defining it as “covered writing”. Steganography is one such pro-

security innovation in which secret data is embedded in a cover. The notion of data hiding or

steganography was first introduced with the example of prisoners’ secret message by Simmons

in 1983.

Three techniques are interlinked, steganography, watermarking and cryptography. Following

figure and table the difference among all these can be explained.

Figure 3.1 Steganography

Page | 14

Criterion/Method Steganography Watermarking Encryption

Carrier Any digital media Mostly

image/audio files

Usually text based,

with some extensions

to image files

Secret data Payload Watermark Plain text

Key Optional Optional Necessary

Input files At least two unless in

self embedding

At least two

unless in self

embedding

One

Detection Blind Usually

informative (i.e.,

original cover or

watermark is

needed for

recovery)

Blind

Authentication Full retrieval of data Usually achieved

by cross

correlation

Full retrieval of data

Objective Secrete

communication

Copyright

preserving

Data protection

Result Stego-file Watermarked file Cipher text

Concern Delectability/capacity Robustness Robustness

Type of attacks Steganalysis Image processing Cryptanalysis

Visibility Never Sometimes Always

Fails when It is detected It is

removed/replaced

De-ciphered

Relation to cover Not necessarily

related to the cover.

The message is more

Usually becomes

an attribute of the

cover image. The

N/A

Table 3.1 Comparison of steganography, watermarking and encryption

Page | 15

important that the

cover.

cover is more

important than

the message.

Flexibility Free to choose any

suitable cover

Cover choice is

restricted

N/A

History Very ancient except

its digital version

Modern era Modern era

There exist two types of materials in steganography: message and carrier. Message is the secret

data that should be hidden and carrier is the material that takes the message in it. There are many

types of steganography methods. Fig below shows the different categories of the formats that can

be used for steganography techniques.

I. Text Steganography

Text steganography can be achieved by altering the text formatting, or by altering certain

characteristics of textual elements (e.g., characters). The goal in the design of coding methods is

to develop alternations that are reliably decidable (even in the presence of noise) yet largely

indiscernible to the reader.

Figure 3.2

Page | 16

II. Image Steganography

Hiding information inside images is a popular technique nowadays. An image with a secret

message inside can easily be spread over the World Wide Web or in newsgroups.

The use of steganography in newsgroups has been researched by German steganographic expert

NielsProvos, who created a scanning cluster which detects the presence of hidden messages

inside images that were posted on the net. However, after checking one million images, no

hidden messages were found, so the practical use of steganography still seems to be limited.

To hide a message inside an image without changing its visible properties, the cover source can

be altered in ”noisy” areas with many color variations, so less attention will be drawn to the

modifications.

The most common methods to make these alterations involve the usage of the least-significant

bit or LSB, masking, filtering and transformations on the cover image. These techniques can be

used with varying degrees of success on different types of image files.

III. Audio Steganography

In audio steganography, secret message is embedded into digitized audio signal which result

slight altering of binary sequence of the corresponding audio file.

There are several methods are available for audio steganography. We are going to have a brief

introduction on some of them.

LSB Coding

Sampling technique followed by Quantization converts analog audio signal to digital binary

sequence.

In this technique LSB of binary sequence of each sample of digitized audio file is replaced with

binary equivalent of secret message.

Page | 17

3.2 Methods of Image Steganography

There are various methods of steganography:

1 .Least significant bit (LSB) method

2. Transform domain techniques

3. Statistical methods

4. Distortion techniques

Least significant bit (LSB) method

Least significant bit (LSB) method of steganography is a simple method to embed information

behind an image file. In this method the LSB(Least significant bit) of a byte is exchanged with

bit of message. This technique produces good results for media steganography like image, audio

and video.

To the human eye, the resultant image will look same to the original object. For example, if we

use image steganography then a letter A might be hidden in three pixels (we are assuming no

compression). The original data for 3 pixels (9 bytes) may be

(00100111 11101001 11001000)

(00100111 11001000 11101001)

(11001000 00100111 11101001)

The binary equivalent for A is 10000001. If we insert the binary equivalent for A in the three

pixels, it will result as

(00100111 11101000 11001000)

(00100110 11001000 11101000)

(11001000 00100111 11101001)

Page | 18

There are only three actually changed in the 8 bytes of 3 pixels. On average, LSB requires that

only one half of the bytes in an image needs be changed. We can also hide data in the least and

second least significant bits as per our choice and still the general human eye will not be able to

recognize the changes.

Encryption and Decryption

Encryption is the process of converting plain data (plaintext) into some other format that appears

to be random and meaningless (ciphertext). Decryption is the process of translating ciphertext

back to original format of text (plaintext). To encrypt more than a small amount of data,

symmetric encryption is used

Page | 19

Chapter- 4

PROPOSED WORK

4.1 Pitfalls and Improvements

In the whole study till now, we studied the concept of LSB. We found three main issues which

need to be cover in our study for efficiency and security of message which is hidden in the

image.

o Storing length of message: In standard LSB method, the length of messages is stored in

first 31 pixels and data is stored in next each pixel. This is the common idea given in the

LSB method. So a malicious user can retrieve the length of message as first step by

reading first 31 pixels. So it is essential to store length of message somewhere else.

o Storing message: After the length, the data is stored with last bit each pixel which can be

easily identified and retrieved by a malicious user. We changed the algo so as hiding the

message not in continuous pixel, this might not be stored in continuous pixels but to store

even pixels or odd pixels or any arbitrary defined order like every 10th pixel. It’s also to

be decided on the basis of size of message to be hidden with the image. Also the pixel

number in which data is to be stored can be retrieved dynomically by retieving size of

images and size of messages.

o Encoding messages: The first concen of study was to make message more and more

secure. Any smart user or hacker can retrieve such data easily if the basic structure of

storage of message is known. So one more implementation was given for security of

data/message. We found that data should be stored in LSB after encryption so that this

will be next layer of security.

For implementation of all above, we have implemented following strategies for defining the

message in more secure way.

Page | 20

 For better image after embedding of message, we used alternative pixel for storing the

message. If we store message bit in each continous pixel, the image quality degrades

so we better if we store the message in even number of pixel. Like first bit will be

stored in 32nd pixel and then next bit to 34th pixel and so on.

 For security of data, length is stored in any random number of pixel in the image. As

per given in most of the standards, length is being stored in first 31 pixels which can

easily be retrieved by any of the person for misuse. So we have used concepts that

length is to be stored in any of the arbitrary defined location which is known only to

sender and receiver. Here both send and receiver works on agreed opon protocol and

embed/decode the message accordingly

 Also for security of data, message is encrypted using java encryption/decryption

APIs. So even if a malicious user get the message, he/she will not be able to use it

without decryption. We planned to use encryption methodology by using javax.crypto

APIs which is using more secure base 64 methods.

4.2 Differences of Standard LSB method and Proposed Method

Standard LSB Method Our LSB Method

Uses continuous pixels of image for

storing messages

Do not use continous pixels of image for

storing message.

Message length is stored on specified

pixels like first 31 pixels

Where the message length is, this will be

known only to sender and receiver

Stegno image is almost same as the

original image.

Stegno image is better then the image of

original LSB method.

The location of storing message in

pixels is common and static.

The location of message is not static and

decided on the basis size of image,

message and their ratio.

Original message is stored with

image.

Message is stored in image after

encryption.

Page | 21

4.3 Java

The proposed tool is developed in Java programming language. Java is an object-oriented

programming language developed by James Gosling and colleagues at Sun Microsystems in the

early 1990s. Unlike conventional languages which are generally designed either to be compiled

to native (machine) code, or to be interpreted from source code at runtime, Java is intended to be

compiled to a bytecode, which is then run (generally using JIT compilation) by a Java Virtual

Machine.

There were five primary goals in the creation of the Java language:

1. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple operating systems.

3. It should contain built-in support for using computer networks.

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use by selecting what was considered the good parts of other object-

oriented languages.

Other than a lots of java language features, we used javax.swing and javax.cypto packages in the

proposed tool. So here we will discuss only these two packages and respective classes which are

being in use in our tool.

4.4 Javax.swing Package

The Swing package is part of the JavaTM Foundation Classes (JFC) in the Java platform. The

JFC encompasses a group of features to help in building GUIs (graphical user interfaces). Swing

provides components such as panels, buttons, selection boxes, etc.

Previous versions of Java (jdk 1.0, 1.1) have used AWT package for these purposes, which

provides similar features. Although the Java 2 Platform still supports the AWT components,

Swing components are easier to use and provide far more functionality. You can identify Swing

components because their names start with J. The AWT button class, for example, is named

Page | 22

Button, whereas the Swing button class is named JButton. In addition, the AWT components are

in the java.awt package, whereas the Swing components are in the javax.swing package.

The most commonly used components are those used for control (s.a. JButton, JRadioButton,

JCheckBox), menus (s.a. JMenuBar, JPopupMenu, menus also may be constructed out of

buttons), text areas (JTextArea, JTextField, JPasswordField, etc.), tables, and many others. Some

components are themselves containers, so you can add other components to them. Those include

JPanel (a general-purpose container, most commonly used to implement nesting of components),

JScrollPane, which rovides a scrollable view of components, JSplitPane, which displays two

components, either side by side or one on top of the other, with a divider that one can drag to

specify how much of the split pane's area goes to each component.

Although swing has thousands of classes and a lots of packages but we have used a very small

number of classes in our proposed tool. In our proposed tool, we have used following swing

classes/components

 JFrame: The JFrame class is slightly incompatible with Frame. Like all other JFC/Swing

top-level containers, a JFrame contains a JRootPane as its only child. The content

pane provided by the root pane should, as a rule, contain all the non-menu components

displayed by the JFrame. Unlike a Frame, a JFrame has some notion of how to respond

when the user attempts to close the window. The default behavior is to simply hide the

JFrame when the user closes the window.

 JButton: An implementation of a "push" button. Buttons can be configured, and to some

degree controlled, by Actions. Using an Action with a button has many benefits beyond

directly configuring a button.

 JSplitPane: JSplitPane is used to divide two (and only two) Components. The

two Components are graphically divided based on the look and feel implementation, and

the two Components can then be interactively resized by the user.

 JPanel: JPanel is a generic lightweight container.

 JFileChooser: JFileChooser provides a simple mechanism for the user to choose a file.

 JLabel: A display area for a short text string or an image, or both. A label does not react

to input events. As a result, it cannot get the keyboard focus. A label can, however,

Page | 23

display a keyboard alternative as a convenience for a nearby component that has a

keyboard alternative but can't display it. A JLabel object can display either text, an

image, or both. You can specify where in the label's display area the label's contents are

aligned by setting the vertical and horizontal alignment. By default, labels are vertically

centered in their display area. Text-only labels are leading edge aligned, by default;

image-only labels are horizontally centered, by default.

 JOptionPane: JOptionPane makes it easy to pop up a standard dialog box that prompts

users for a value or informs them of something. All dialogs are modal.

Each showXxxDialog method blocks the caller until the user's interaction is complete.

 JTextArea: A JTextArea is a multi-line area that displays plain text. It is intended to be a

lightweight component that provides source compatibility with

the java.awt.TextArea class where it can reasonably do so.

4.5 Javax.crypto Package: The javax.crypto package defines classes and interfaces for various

cryptographic operations. The central class is Cipher, which is used to encrypt and decrypt

data. CipherInputStream and CipherOutputStream are utility classes that use a Cipher object to

encrypt or decrypt streaming data. SealedObject is another important utility class that uses

a Cipher object to encrypt an arbitrary serializable Java object. The KeyGenerator class creates

the SecretKey objects used by Cipher for encryption and decryption. SecretKeyFactory encodes

and decodes SecretKey objects. TheKeyAgreement class enables two or more parties to agree on

a SecretKey in such a way that an eavesdropper cannot determine the key. The Mac class

computes a message authentication code (MAC) that can ensure the integrity of a transmission

between two parties who share a SecretKey. A MAC is akin to a digital signature, except that it

is based on a secret key instead of a public/private key pair.

Although javax.crypto has a lots of classes and packages but we have used a very small number

of classes in our proposed tool. In our proposed tool, we have used following classes of crypto

package:

Cipher: This class provides the functionality of a cryptographic cipher for encryption and
decryption. It forms the core of the Java Cryptographic Extension (JCE) framework. In order to
create a Cipher object, the application calls the Cipher's getInstance method, and passes the name
of the requested transformation to it. Optionally, the name of a provider may be specified.

Page | 24

A transformation is a string that describes the operation (or set of operations) to be performed on

the given input, to produce some output. A transformation always includes the name of a

cryptographic algorithm (e.g., DES), and may be followed by a feedback mode and padding

scheme.

A transformation is of the form:

 "algorithm/mode/padding" or

 "algorithm"

(in the latter case, provider-specific default values for the mode and padding scheme are used).

For example, the following is a valid transformation:

 Cipher c = Cipher.getInstance("DES/CBC/PKCS5Padding");

Using modes such as CFB and OFB, block ciphers can encrypt data in units smaller than the

cipher's actual block size. When requesting such a mode, you may optionally specify the number

of bits to be processed at a time by appending this number to the mode name as shown in the

"DES/CFB8/NoPadding" and "DES/OFB32/PKCS5Padding" transformations. If no such number

is specified, a provider-specific default is used. (For example, the SunJCE provider uses a default

of 64 bits for DES.) Thus, block ciphers can be turned into byte-oriented stream ciphers by using

an 8 bit mode such as CFB8 or OFB8.

Modes such as Authenticated Encryption with Associated Data (AEAD) provide authenticity

assurances for both confidential data and Additional Associated Data (AAD) that is not

encrypted

KeyGenerator: This class provides the functionality of a secret (symmetric) key generator.

Key generators are constructed using one of the getInstance class methods of this class.

KeyGenerator objects are reusable, i.e., after a key has been generated, the same KeyGenerator

object can be re-used to generate further keys. There are two ways to generate a key: in an

Page | 25

algorithm-independent manner, and in an algorithm-specific manner. The only difference

between the two is the initialization of the object:

 Algorithm-Independent Initialization

All key generators share the concepts of a keysize and a source of randomness. There is

an init method in this KeyGenerator class that takes these two universally shared types

of arguments. There is also one that takes just a keysizeargument, and uses the

SecureRandom implementation of the highest-priority installed provider as the source of

randomness (or a system-provided source of randomness if none of the installed

providers supply a SecureRandom implementation), and one that takes just a source of

randomness.

Since no other parameters are specified when you call the above algorithm-

independent init methods, it is up to the provider what to do about the algorithm-

specific parameters (if any) to be associated with each of the keys.

 Algorithm-Specific Initialization

For situations where a set of algorithm-specific parameters already exists, there are

two init methods that have an AlgorithmParameterSpec argument. One also has

a SecureRandom argument, while the other uses the SecureRandom implementation of

the highest-priority installed provider as the source of randomness (or a system-provided

source of randomness if none of the installed providers supply a SecureRandom

implementation).

In case the client does not explicitly initialize the KeyGenerator (via a call to an init method),

each provider must supply (and document) a default initialization. Every implementation of the

Java platform is required to support the following standard KeyGenerator algorithms with the

keysizes in parentheses:

 AES (128)

 DES (56)

Page | 26

 DESede (168)

 HmacSHA1

 HmacSHA256

SecretKey: This interface contains no methods or constants. Its only purpose is to group (and

provide type safety for) secret keys. Provider implementations of this interface must overwrite

the equals and hashCode methods inherited from java.lang.Object, so that secret keys are

compared based on their underlying key material and not based on reference.

Keys that implement this interface return the string RAW as their encoding format

(see getFormat), and return the raw key bytes as the result of a getEncoded method call.

(The getFormat and getEncoded methods are inherited from thejava.security.Key parent

interface.)

SecretKeySpec: This class specifies a secret key in a provider-independent fashion.It can be

used to construct a SecretKey from a byte array, without having to go through a (provider based)

SecretKeyFactory. This class is only useful for raw secret keys that can be represented as a byte

array and have no key parameters associated with them, e.g., DES or Triple DES keys.

Page | 27

Chapter- 5

IMPLEMENTATION DETAILS

5.1 Screenshots

MessageAdd.java

//MainScreen

figure 5.1

This is the main screen. Message can be given in the text area given on upper portion. In the
lower panel, original image can be taken. In the lower panel, right panel the image with message
are shown.

Page | 28

// open image Figure 5.2

On the main screen, if open button is clicked, a open file dialog box is shown. By this screen

original image can be select.

Page | 29

// after image open

After selection of image, it is shown in left side of lower panel. If the image is large then
automatically scroll bar is added in image.

Page | 30

// embed message in image

After giving the message in text area and image in left panel, steged image is shown on lower
right panel.

// show encrypt message

Page | 31

On clicking on show encryption, encrypted message is shown on lower panel.

// save stego image

This screen is for saving the stegged image on a given location.

// error

Page | 32

Error message if no message is embedded.

// Reset click

On clicking on Reset button the whole screen get clear.

Page | 33

MessageExtract
// MainScreen

Page | 34

DecodeMessage.java figure 5.3

For decoding the above screen can be shown. After selection of steged image, decoded message

is shown in the text area which is given on lower panel (Text area).

Page | 35

Figure 5.4

For decoding message from image, open button is clicked by which steged image can be

selected.

Page | 36

Figure 5.5

After selection of a image, decoded message is shown on lower panel.

Page | 37

5.2 Class, method details and Algorithms

MessageAdd class Methods

Modifier and Type Method and Description

private void assembleInterface()

This method used for add components and containers on Frame

And setting their layout. Which provide user interface to user.

Algorithm

1. Create a panel and set FlowLayout of it.

2. Add buttons open, embed, decode , save, reset on it.

3. Set listener and set Mnemonic on these buttons.

4. Create another Panel, set GridLayout of it.

5. It add scrollpane on panel and split it.

private void embedByte(java.awt.image.BufferedImage img, byte b, int start,

int storageBit)

This method take 4 argument

1. Image to embed msg.

2. Byte to be store

3. Start position of store bit.

4. storageBit assume it and take value 0.

This Method add encrypted message in Image. This method

calculate height and width of image.

Algorithm

1. First calculate max height and width of image.

2. Select random pixel of image repeate step 3 to 6

Encrypted message length.

3. Calculate RGB of current pixel.

Page | 38

4. Calculate key value using getBitValue method.

5. Calculate value which store in image using setBitValue

method

6. Set calculated bit in current pixel of image using setRGB

method.

private void embedInteger(java.awt.image.BufferedImage img, int n, int start,

int storageBit)

This method take 4 argument

1. Image to embed length of Encrypted Message.

2. Length of Encrypted Message.

3. Start position of store bit.

4. storageBit assume it and take value 0.

This Method add length of Encrypted Message in the Image in

random pixel of image.

Algorithm

1. First calculate max height and width of image.

2. Select pixel of image,step 3 to 6 repeated first 31 pixels

of image.

3. Calculate RGB of current pixel.

4. Calculate key value using getBitValue method.

5. Calculate value which store in image using setBitValue

method

6. Set calculated bit in current pixel of image using setRGB

method.

static byte[] encrypt(java.lang.String Data)

This method take String to be encrypt. It used AES Algorithm to

encrypt Message and Base64 to encode message.

Page | 39

Algorithm

1. Take string to be Encrypt.

2. Calculate key for encryption

3. Create Cipher’s object basis on key.

4. It encrypts string data and Encodes using Base64Encoder.

5. And return encrypted message.

private static

java.security.Key

generateKey()

This Method Generate Key to encrypt Message basis on given

bytes.

Algorithm

1. Use SecretKeySpec.

2. SecretKeySpec’s constructor take user define bytes array

to generate Key.

private int getBitValue(int n, int location)

This method take 2 argument

1. Byte value which is store in image.

2. Location of bit.

This Method calculates the Key value for Image Basis on

Message character and Pixel's RGB value. Return key value.

Algorithm

1. Take byte to generate key value.

2. It return 0 or 1 bit for current pixel.

private void MessageAdd()

use for hidden message in image.

Algorithm

Page | 40

1. First Extract text from TextArea.

2. Calculate subimage from actual image.

3. call MessageAdd Method.

4. Create Label.

5. Set icon on Label.

private void MessageAdd(java.awt.image.BufferedImage img,

java.lang.String mess)

it Method take Image and Message argument.This Method first

Encrypt the message and add encrypted message on random

pixel in image.

Algorithm

1. First calculate message length.

2. Calculate height and width of image.

3. Get Key value.

4. Encrypt Message using encrypt Method.

5. Set Length of Encrypted message using embedInteger

method.

6. Set Encrypted message in image using embedByte

Method.

7. Repeate embedByte method encryptedBytes’s length.

private void openImage()

openImage() Method Open the Image which are selected by File

Chooser.

This Image is used for Hide Message and it's length.

Algorithm

1. Get File from FileDialog.

2. Read image from File.

Page | 41

3. Create Label and add image on it.

4. Add label on originalPane.

private void resetInterface()

This Method Reset all component and set in starting position.

Algorithm

1. Reset TextArea

2. Remove all component from ScrollPane.

3. Remove all images.

private void saveImage()

This Method save the Stego image which have hidden encrypted

Message and it's length at specific location.

Algorithm

1. Get File to be save.

2. Get Name of File.

3. Set extension of File(png).

4. And Write Image at particular location.

private int setBitValue(int n, int location, int bit)

This method take 3 argument

1. RGB of current pixel.

2. Location assumes it and takes value 0.

3. Key value which is calculated.

This Method calculates a value using LSB Algorithm witch adds

in image.

Algorithm

1. Calculate value of this location.

Page | 42

2. Get value to be stored this position.

3. Match both values using LSB algorithm.

4. And return int value.

private java.io.File showFileDialog(boolean open)

This Method use for show File Dialog and Filter File like

jpg,png,gif etc.

Algorithm

1. Create FileChooser’s object.

2. Using Filter for Filter Image.

3. Select File.

4. Return Selected File.

void actionPerformed(java.awt.event.ActionEvent ae)

It take 1 argument of ActionEvent class generated by JVM when

event on button.This Method performed on clicked any Button.

Algorithm

1. Get source of object.

2. Check which button clicked.

3. Call particular method.

static void main(java.lang.String[] arg)

This is Main Method of Class, where program is Started.

Algorithm

1. Set Look and Feel of Frame.

2. Create object of this class.

3. Visible of created frame.

Page | 43

MessageExtract class Methods

Modifier and

Type

Method and Description

void

actionPerformed(java.awt.event.ActionEvent ae)

This Method performed on click on any Button.

It take 1 argument of ActionEvent class generated by JVM when

event on button.This Method performed on clicked any Button.

Algorithm

1. Get source of object.

2. Check which button clicked.

3. Call particular method.

private void

assembleInterface()

This method used for add components and containers on Frame

And setting their layout. Which provide user interface to user.

Algorithm

1. Create a panel and set FlowLayout of it.

2. Add buttons open, embed, decode , save, reset on it.

3. Set listener and set Mnemonic on these buttons.

4. Create another Panel, set GridLayout of it.

5. It add scrollpane on panel and split it.

static byte[]

decrypt(java.lang.String encryptedData)

This Method take String which decrypt.

This Method Decrypt message from return by image using AES

Page | 44

algorithm and Decode64 to decoding message.

Algorithm

1. Take string to be Decrypt.

2. Get key for decryption

3. Create Cipher’s object basis on key.

4. It decrypts string data and decodes using Base64Encoder.

5. And return Decrypted message.

private byte

extractByte(java.awt.image.BufferedImage img, int start,

int storageBit)

This method take 3 argument

1. Stego Image whitch has hidden msg.

2. Start position of store bit.

3. storageBit assume it and take value 0.

This Method extract encrypted message from Image. And return

byte from stego image.

private int

extractInteger(java.awt.image.BufferedImage img, int start,

int storageBit)

This method take 3 argument

1. Stego Image whitch has hidden length of Encrypted msg.

2. Start position of store bit.

3. storageBit assume it and take value 0.

This Method return length of encrypted message from stego

image.

private int

getBitValue(int n, int location)

This method take 2 argument

1. RGB value of current pixel.

2. storageBit assume it and take value 0.

Page | 45

This Method calculates key value and return key it.

Algorithm

1. Take byte to generate key value.

2. It return 0 or 1 bit for current pixel.

private void

MessageExtract()

use for extract encrypted Message from stego image and decrypt

it.

private void

openImage()

openImage() Method Open the Image which are selected by File

Chooser. And using Filter for filte image like png,jpeg,bmp,jpg.

openImage() Method Open the Image which are selected by File

Chooser.

This Image is used for Hide Message and it's length.

Algorithm

1. Get File from FileDialog.

2. Read image from File.

3. Create Label and add image on it.

4. Add label on originalPane.

private void

resetInterface()

This Method Reset all component in starting position.

Algorithm

1. Reset TextArea

2. Remove all component from ScrollPane.

Page | 46

3. Remove all images.

private int

setBitValue(int n, int location, int bit)

This method take 3 argument

1. Assume Default value of stored bit is 0.

2. Position of bit value.

3. Key value which is calculated.

This Method calculates bit value, which stored in stego image. It

return byte to stored and set actual RGB value in image.

Algorithm

1. Calculate value of this location.

2. Get value to be stored this position.

3. Match both values using LSB algorithm.

4. And return int value.

private java.io.File

showFileDialog(boolean open)

This Method use for show File Dialog and Filter File like

jpg,png,gif etc.

Algorithm

1. Create FileChooser’s object.

2. Using Filter for Filter Image.

3. Select File.

4. Return Selected File.

private void

assembleInterface()

This method used for add components and containers on Frame

And setting their layout. Which provide user interface to user.

Algorithm

6. Create a panel and set FlowLayout of it.

7. Add buttons open, embed, decode , save, reset on it.

8. Set listener and set Mnemonic on these buttons.

9. Create another Panel, set GridLayout of it.

10. It add scrollpane on panel and split it.

Page | 47

5.3 Code

File MessageAdd.java

import java.awt.image.*;

 import javax.swing.*;

 import java.awt.*;

 import java.awt.event.*;

 import javax.imageio.*;

 public class MessageAdd extends JFrame implements ActionListener

 {

 JButton open = new JButton("Open"), embed = new JButton("Embed"),

 save = new JButton("Save into new file"),decode = new JButton("Decode"), reset =

new JButton("Reset");

 JTextArea message = new JTextArea(10,3);

 BufferedImage sourceImage = null, embeddedImage = null;

 JSplitPane sp = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT);

 JScrollPane originalPane = new JScrollPane(),

 embeddedPane = new JScrollPane();

 public MessageAdd() {

 super("Embed stegonographic message in image");

 assembleInterface();

 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

 this.setBounds(GraphicsEnvironment.getLocalGraphicsEnvironment().

 getMaximumWindowBounds());

 this.setVisible(true);

 sp.setDividerLocation(0.5);

Page | 48

 this.validate();

 }

 private void assembleInterface() {

 JPanel p = new JPanel(new FlowLayout());

 p.add(open);

 p.add(embed);

 p.add(decode);

 p.add(save);

 p.add(reset);

 this.getContentPane().add(p, BorderLayout.SOUTH);

 open.addActionListener(this);

 embed.addActionListener(this);

 save.addActionListener(this);

 reset.addActionListener(this);

 decode.addActionListener(this);

 open.setMnemonic('O');

 embed.setMnemonic('E');

 save.setMnemonic('S');

 reset.setMnemonic('R');

 decode.setMnemonic('D');

 p = new JPanel(new GridLayout(1,1));

 p.add(new JScrollPane(message));

 message.setFont(new Font("Arial",Font.BOLD,20));

 p.setBorder(BorderFactory.createTitledBorder("Message to be embedded"));

 this.getContentPane().add(p, BorderLayout.NORTH);

 sp.setLeftComponent(originalPane);

 sp.setRightComponent(embeddedPane);

 originalPane.setBorder(BorderFactory.createTitledBorder("Original Image"));

Page | 49

 embeddedPane.setBorder(BorderFactory.createTitledBorder("Steganographed

Image"));

 this.getContentPane().add(sp, BorderLayout.CENTER);

 }

 public void actionPerformed(ActionEvent ae) {

 Object o = ae.getSource();

 if(o == open)

 openImage();

 else if(o == embed)

 MessageAdd();

 else if(o == save)

 saveImage();

 else if(o == reset)

 resetInterface();

 else if(o == decode){

 dispose();

 new MessageExtract();

 }

 }

 private java.io.File showFileDialog(final boolean open) {

 JFileChooser fc = new JFileChooser("Open an image");

 javax.swing.filechooser.FileFilter ff = new javax.swing.filechooser.FileFilter() {

 public boolean accept(java.io.File f) {

 String name = f.getName().toLowerCase();

 if(open) // if true

Page | 50

 return f.isDirectory() || name.endsWith(".jpg") || name.endsWith(".jpeg") ||

 name.endsWith(".png") || name.endsWith(".gif") || name.endsWith(".tiff") ||

 name.endsWith(".bmp") || name.endsWith(".dib");

 return f.isDirectory() || name.endsWith(".png") || name.endsWith(".bmp");

 }

 public String getDescription() {

 if(open) // true

 return "Image (*.jpg, *.jpeg, *.png, *.gif, *.tiff, *.bmp, *.dib)";

 return "Image (*.png, *.bmp)";

 }

 };

 fc.setAcceptAllFileFilterUsed(false);

 fc.addChoosableFileFilter(ff);

 java.io.File f = null; // Get File as Image

 if(open && fc.showOpenDialog(this) == fc.APPROVE_OPTION)

 f = fc.getSelectedFile();

 else if(!open && fc.showSaveDialog(this) == fc.APPROVE_OPTION)

 f = fc.getSelectedFile();

 return f;

 }

 private void openImage() {

 java.io.File f = showFileDialog(true);

 try {

 sourceImage = ImageIO.read(f);

Page | 51

 JLabel l = new JLabel(new ImageIcon(sourceImage));

 originalPane.getViewport().add(l);

 this.validate();

 } catch(Exception ex) { ex.printStackTrace(); }

 }

 private void MessageAdd() {

 String mess = message.getText();

 embeddedImage = sourceImage.getSubimage(0,0,

 sourceImage.getWidth(),sourceImage.getHeight());

 MessageAdd(embeddedImage, mess); // call MessageAdd and initialize

"embeddedImage" varible

 JLabel l = new JLabel(new ImageIcon(embeddedImage));

 embeddedPane.getViewport().add(l);

 this.validate();

 }

 private void MessageAdd(BufferedImage img, String mess) {

 int messageLength = mess.length();

 int imageWidth = img.getWidth(), imageHeight = img.getHeight(),

 imageSize = imageWidth * imageHeight;

 if(messageLength * 16 + 32 > imageSize) {

 JOptionPane.showMessageDialog(this, "Message is too long for the chosen image",

 "Message too long!", JOptionPane.ERROR_MESSAGE);

 return;

 }

Page | 52

 System.out.println("Message Length "+messageLength); // see info

 embedInteger(img, messageLength, 0, 0); // set Length

 byte b[] = mess.getBytes();

 for(int i=0; i<b.length; i++)

 embedByte(img, b[i], i*16+32, 0); // set Message

 }

 private void embedInteger(BufferedImage img, int n, int start, int storageBit) {

 int maxX = img.getWidth(), maxY = img.getHeight();

 int startX = start/maxY, startY = start - startX*maxY;

 int count=0;

 System.out.println("width "+maxX+" height "+maxY+" startX "+startX+" startY

"+startY);

 for(int i=startX; i<maxX && count<32; i++) {

 for(int j=startY; j<maxY && count<32; j++) {

 int rgb = img.getRGB(i, j);

 System.out.println("i "+i+" j "+j+" count "+count+" RGB "+rgb); // rgb calulate

 int bit = getBitValue(n, count);

 rgb = setBitValue(rgb, storageBit, bit);

 img.setRGB(i, j, rgb);

 count++;

Page | 53

 }

 }

 }

 int even = 0;

 private void embedByte(BufferedImage img, byte b, int start, int storageBit) {

 System.out.println("Byte b "+b+"\n \n");

 int maxX = img.getWidth(), maxY = img.getHeight();

 int startX = start/maxY, startY = start - startX*maxY, count=0;

 System.out.print("width "+maxX+" height "+maxY+" startX "+startX+" startY

"+startY);

 System.out.println(" startX "+startX+" startY "+startY);

 int bb = b;

 System.out.println("bbbbbb "+bb);

 if(bb%2 == 0)

 bb+=2;

 else

 bb-=2;

 System.out.println("after even odd "+bb);

 for(int i=startX; i<maxX && count<8; i++) {

 for(int j=startY; j<maxY && count<8; j++) {

 if(even%2 == 0)

 {

 int rgb = img.getRGB(i, j);

Page | 54

 System.out.println("i "+i+" j "+j+" count "+count+" RGB "+rgb); // rgb

calulate

 int bit = getBitValue(bb, count);

 rgb = setBitValue(rgb, storageBit, bit);

 img.setRGB(i, j, rgb);

 count++;

 even = 1;

 } else {

 even = 0;

 }

 even = 0;

 }

 }

 }

 private void saveImage() {

 if(embeddedImage == null) {

 JOptionPane.showMessageDialog(this, "No message has been embedded!",

 "Nothing to save", JOptionPane.ERROR_MESSAGE);

 return;

 }

 java.io.File f = showFileDialog(false);

 String name = f.getName();

 String ext = name.substring(name.lastIndexOf(".")+1).toLowerCase();

 if(!ext.equals("png") && !ext.equals("bmp") && !ext.equals("dib")) {

 ext = "png";

 f = new java.io.File(f.getAbsolutePath()+".png");

 }

Page | 55

 try {

 if(f.exists()) f.delete();

 ImageIO.write(embeddedImage, ext.toUpperCase(), f);

 } catch(Exception ex) { ex.printStackTrace(); }

 }

 private void resetInterface() {

 message.setText("");

 originalPane.getViewport().removeAll();

 embeddedPane.getViewport().removeAll();

 sourceImage = null;

 embeddedImage = null;

 sp.setDividerLocation(0.5);

 this.validate();

 }

 private int getBitValue(int n, int location) { // getBit

 int v = n & (int) Math.round(Math.pow(2, location));

 System.out.println("get n "+n+" Location "+location+" V "+v);

 return v==0?0:1;

 }

 private int setBitValue(int n, int location, int bit) { // setBit

 int toggle = (int) Math.pow(2, location);

 System.out.println("set n: "+n+" loc "+location);

 int bv = getBitValue(n, location);

 System.out.println("set bv: "+bv+" bit "+bit);

Page | 56

 if(bv == bit)

 {

 System.out.println("Set n after condtion "+n+"\n");

 return n;

 }

 if(bv == 0 && bit == 1)

 n |= toggle;

 else if(bv == 1 && bit == 0)

 n ^= toggle;

 System.out.println("Set n after condtion "+n+"\n"); // Value decrease if GRB in minus

value

 return n;

 }

 public static void main(String arg[]) {

 new MessageAdd();

 }

 }

Page | 57

File MessageExtract.java

import java.awt.image.*;

 import javax.swing.*;

 import java.awt.*;

 import java.awt.event.*;

 import javax.imageio.*;

 public class MessageExtract extends JFrame implements ActionListener

 {

 JButton open = new JButton("Open"), decode = new JButton("Decode"),

 reset = new JButton("Reset"),embed = new JButton("Embed");

 JTextArea message = new JTextArea(10,3);

 BufferedImage image = null;

 JScrollPane imagePane = new JScrollPane();

 public MessageExtract() {

 super("Decode stegonographic message in image");

 assembleInterface();

 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

 this.setBounds(GraphicsEnvironment.getLocalGraphicsEnvironment().

 getMaximumWindowBounds());

 this.setVisible(true);

 }

 private void assembleInterface() {

 JPanel p = new JPanel(new FlowLayout());

 p.add(open);

 p.add(decode);

 p.add(embed);

Page | 58

 p.add(reset);

 this.getContentPane().add(p, BorderLayout.NORTH);

 open.addActionListener(this);

 decode.addActionListener(this);

 reset.addActionListener(this);

 embed.addActionListener(this);

 open.setMnemonic('O');

 decode.setMnemonic('D');

 embed.setMnemonic('E');

 reset.setMnemonic('R');

 p = new JPanel(new GridLayout(1,1));

 p.add(new JScrollPane(message));

 message.setFont(new Font("Arial",Font.BOLD,20));

 p.setBorder(BorderFactory.createTitledBorder("Decoded message"));

 message.setEditable(false);

 this.getContentPane().add(p, BorderLayout.SOUTH);

 imagePane.setBorder(BorderFactory.createTitledBorder("Steganographed Image"));

 this.getContentPane().add(imagePane, BorderLayout.CENTER);

 }

 public void actionPerformed(ActionEvent ae) {

 Object o = ae.getSource();

 if(o == open)

 openImage();

 else if(o == decode)

 MessageExtract();

 else if(o == reset)

 resetInterface();

 else if(o == embed){

Page | 59

 dispose();

 new MessageAdd();

 }

 }

 private java.io.File showFileDialog(boolean open) {

 JFileChooser fc = new JFileChooser("Open an image");

 javax.swing.filechooser.FileFilter ff = new javax.swing.filechooser.FileFilter() {

 public boolean accept(java.io.File f) {

 String name = f.getName().toLowerCase();

 return f.isDirectory() || name.endsWith(".png") || name.endsWith(".bmp");

 }

 public String getDescription() {

 return "Image (*.png, *.bmp)";

 }

 };

 fc.setAcceptAllFileFilterUsed(false);

 fc.addChoosableFileFilter(ff);

 java.io.File f = null;

 if(open && fc.showOpenDialog(this) == fc.APPROVE_OPTION)

 f = fc.getSelectedFile();

 else if(!open && fc.showSaveDialog(this) == fc.APPROVE_OPTION)

 f = fc.getSelectedFile();

 return f;

 }

 private void openImage() {

 java.io.File f = showFileDialog(true);

 try {

Page | 60

 image = ImageIO.read(f);

 JLabel l = new JLabel(new ImageIcon(image));

 imagePane.getViewport().add(l);

 this.validate();

 } catch(Exception ex) { ex.printStackTrace(); }

 }

 private void MessageExtract() {

 int len = extractInteger(image, 0, 0);

 byte b[] = new byte[len];

 for(int i=0; i<len; i++){

 b[i] = extractByte(image, i*16+32, 0);

 System.out.println(b[i]);

 }

 message.setText(new String(b));

 }

 private int extractInteger(BufferedImage img, int start, int storageBit) {

 int maxX = img.getWidth(), maxY = img.getHeight(),

 startX = start/maxY, startY = start - startX*maxY, count=0;

 int length = 0;

 for(int i=startX; i<maxX && count<32; i++) {

 for(int j=startY; j<maxY && count<32; j++) {

 int rgb = img.getRGB(i, j), bit = getBitValue(rgb, storageBit);

Page | 61

 length = setBitValue(length, count, bit);

 count++;

 }

 }

 return length;

 }

int even = 0;

 private byte extractByte(BufferedImage img, int start, int storageBit) {

 int maxX = img.getWidth(), maxY = img.getHeight(),

 startX = start/maxY, startY = start - startX*maxY, count=0;

 byte b = 0;

 for(int i=startX; i<maxX && count<8; i++) {

 for(int j=startY; j<maxY && count<8; j++) {

 if(even%2 == 0)

 {

 int rgb = img.getRGB(i, j), bit = getBitValue(rgb, storageBit);

 b = (byte)setBitValue(b, count, bit);

 System.out.println("Binary "+b);

 count++;

 even = 1;

 } else {

 even = 0;

 }

 even = 0;

 }

 }

Page | 62

 int bb = b;

 if(bb%2 == 0)

 bb-=2;

 else

 bb+=2;

 return (byte)bb;

 }

 private void resetInterface() {

 message.setText("");

 imagePane.getViewport().removeAll();

 image = null;

 this.validate();

 }

 private int getBitValue(int n, int location) { // Get Bit

 int v = n & (int) Math.round(Math.pow(2, location));

 System.out.println("n "+n+" Location "+location+" V "+v);

 return v==0?0:1;

 }

 private int setBitValue(int n, int location, int bit) { // Set Bit

 int toggle = (int) Math.pow(2, location), bv = getBitValue(n, location);

 if(bv == bit)

 return n;

 if(bv == 0 && bit == 1)

 n |= toggle;

 else if(bv == 1 && bit == 0)

 n ^= toggle;

 return n;

 }

 }

Page | 63

Chapter - 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion and Future Work

The proposed method is combination of one of the popular method of stagnography which

is LSB and beauty of cryptography APIs of Java. Now the latest versions of java are using

base 64 methods for encryption and decryption. In the proposed tool we have used least

significant bit of image for hiding the message after encoding it in some encrypted format.

The proposed system is using Java1.8 for coding. The user interface is designed in Swing.

Java has provided very efficient APIs for image handing. The tool is a good

demonstration of LSB method and encoding scheme which can later be used in several

applications.

A lots of researchers have worked on concept of LSB. Some of them have designed good

algorithm. But a very least number of researchers have taken it to implementation level.

Our focus of the work was to implement one of the best models, in which the data can be

moved in secure and safe way. We tried to study various language specifications. Java has

implemented one of the best security model so we used java security for designing the

tool.

For security of encrypted data, a lots of complex algorithms were suggested by

researchers. Most of these algorithms were very effective but these algorithms are a bit

complex in understanding and implementation. So we used our own algorithm for storing

length of message, for encoding message location etc.

Overall the proposed tool is very nice, compact and effective tool for implementation and

understanding of LSB method of stegnography. Also the tool is developed by using

complete object oriented methodology which can later be extended as per need.

The work of stagnography and encryption can never ends. This is the race condition in

Page | 64

between hackers and these methods. In the present tool more image processing like

resizing, more brightness etc can be added. Although java is using Base64 method which

is one of the best methods as on date but still it is not destination. As and when new

methodologies are evaluated, it is essential to update the tool as per requirement

Our ability to discover hidden information during our investigations is vital, especially as

new and innovative methods continue to evolve. During the past decade, data hiding

technologies have advanced from limited use to ubiquitous deployment. With the rapid

advancement of smart mobile devices, the need to protect valuable proprietary information

has generated a plethora of new methods and technologies for both good and evil. Most

dangerous among these are those that employ hiding methods along with cryptography,

thus providing a way to both conceal the existence of hidden information while strongly

protecting the information even if the channel is discovered.

Many vendors provide excellent technologies for protecting the privacy of information for

the desktop. In addition, many of the latest smart mobile platforms (Android and iPhone)

include built-in cryptographic capabilities. What is more dangerous and difficult to

discover/decipher are data hiding methods that exploit multimedia and protocol

weaknesses to both hide and communicate covertly. These new techniques provide hybrid

solutions that combine the best of cryptography with the best of steganography. The

interest, innovation, and advancement of these threats continue to go unchecked for the

most part.

The present study can be extended for the use of different mobile technologies like

window mobile, android, iphone etc. Also the study can be extended for audio and vedio

type of media. In the present system, we are using encryption methods which are given by

java only. Later on, the tool and such applications can be developed in almost all the

available technologies. As java is open source and source code of encryption/decryption

methods are available, these methods/classes can be re-written to extend their algorithm

and our new ideas can be included in these methods.

Page | 65

REFERENCES

[1] CHIN-CHEN CHANG, , H.W .TSENG. ,”A steganographic method for digital images using

side match. Pattern Recognition Letters, 2004,vol. 25, p.1431-1437.

[2] Vijay kumarsharma, Vishal Shrivastava, “A Steganog-raphy algorithm for hiding image in

image by improved LSB substitution by minimize technique”, Journal of Theoretical and

Applied Information Technology, Vol. 36 No.1, 15th February 2012.

[3] Mehdi Kharrazi, Husrev T. Sencar, and NasirMemon,, Image Steganography and: Concepts

and Practice”, Depart-ment of Electrical and Computer Engineering Department of Computer

and Information Science Polytechnic Universi-ty,Brooklyn, NY 11201, USA.

[4] R. Amirtharajan, R. Akila, P. Deepikachowdavarapu “A Comparative Analysis of Image

Steganogra-phy”,International Journal of computer Applications,Vol2- No3, May 2010.

[5] SaeedMahmoudpour, SattarMirzakuchaki,“Hardware Architecture for a Message Hiding

Algorithm with Novel Randomizers”, International Journal of Computer Applica-tions (0975 –

8887) Volume 37– No.7, January 2012.

[6] Mrs. Kavitha, KavitaKadam, AshwiniKoshti, PriyaDunghav, “Steganography Using Least

Significant Bit Algo-rithm”, International Journal of Engineering Research and applications,

vol.2, issue 3, pp. 338-341May-June2012.

[7] BassamJamilMohd, Saed Abed and Thaier Al- Hayajneh, Computer Engineering Department

Hashemite University, Zarqa, Jordan Sahel Alouneh,ComputerEngi-neering Department,

German-Jordan University, Amman, Jordan, “FPGA Hardware of the LSB Steganography Meth-

od” IEEE 2012.

[8] Atallah M. Al-Shatnawi, “A New Method in Image ste-ganography with improved image

quality”, Applied mathe-matical science, Vol. 6, no79, 2012.

Page | 66

[9] Nagham Hamid, AbidYahya, R. Badlishah Ahmad, Osamah M, “Image Steganography

Techniques: An Over-view”, International Journal of computer science and securi-ty, vol (6),

Issue (3), 2012.

[10] Aneesh Jain, IndranilSen Gupta, ―A JPEG Compression Resistant Steganography Scheme

for Raster Graphics Images‖, TENCON 2007 - 2007 IEEE Region 10 Conference, vol.2

[11] Jessica Fridrich, MiroslavGoljan, and Rui Du, ―Detecting LSB Steganography in Color

and Gray-Scale Images‖, Magazine of IEEE Multimedia, Special Issue on Multimedia and

Security, pp.22-28, October-December 2001.

[12] MohesenAshourian, R.C. Jain and Yo-Sung Ho, “Dithered Quantization for Image Data

Hiding in the DCT domain”, in proceeding of IST2003, pp.171-175, 16-18 August, 2003 Isfahan

Iran.

[13]Y. R.PARK, H.H.KANG, S.U.SHIN, K.R.KWON,”A steganographic scheme in digital

images using information of neighboring pixels. In Proc. International

[14] MamtaJuneja, Parvinder S. Sandhu, and EktaWalia,”Application of LSB Based

Steganographic Technique for 8-bit Color Images” World Academy of Science Engineering, and

Technology 50 2009.

[15] R. Chandramouli and N. Memon, “Analysis of lsb based image steganography techniques,”

in ImageProcessing, 2001.Proceedings. 2001 International Conference on, vol. 3, pp. 1019–1022,

IEEE,2001.

[16] V. Lokeswara Reddy, Dr.A.Subramanyam, Dr.P. Chenna Reddy, “Implementation of LSB

Steganography and its Evaluation for Various File Formats”, Int. J. Advanced Networking and

Applications 868 Volume: 02, Issue: 05, Pages: 868-872 (2011).

Page | 67

[17] A. Daneshkhah, H. Aghaeinia, and S. H. Seyedi, “A more secure steganography method in

spatial domain,” in Intelligent Systems, Modelling and Simulation (ISMS), 2011 Second

International Conference on, pp. 189–194, IEEE, 2011.

[18] Petitcolas, Fabien A.P.; Katzenbeisser, Stefan (2000). Information Hiding Techniques for

Steganography and Digital Watermarking.Artech House Publishers.ISBN 1-580-53035-4.

[19] Johnson, Neil; Duric, Zoran; Jajodia, Sushil (2001). Information hiding: steganography and

watermarking: attacks and countermeasures. Springer.ISBN 978-0-792-37204-2.

[20] N.F. Johnson and S. Jajodia, Exploring steganography: Seeing the unseen, IEEE

Computer,31(2) (1998) 26 - 34.

[21] J.C. Judge, Steganography: Past, present, future. SANS Institute publication,

http://www.sans.org/ reading_room/whitepapers/stenganography/552.php, 2001.

[22] N. Provos and P. Honeyman, Hide and seek: An introduction to steganography, IEEE

Security and Privacy, 01 (3) (2003) 32-44.

[23] P. Moulin and R. Koetter, Data-hiding codes, Proceedings of the IEEE, 93 (12) (2005) 2083

- 2126.

[24] S.B. Sadkhan, Cryptography: Current status and future trends, in: roceedings of IEEE

International Conference on Information & Communication Technologies: From Theory to

Applications, Damascus. Syria, April 19-23,2004, pp. 417-418.

[25] G.J. Simmons, The prisoners’ problem and the subliminal channel, in: Proceedings of

International conference on Advances in Cryptology, RYPTO8 3, August 22-24, 1984, pp. 51-

67.

Page | 68

[26] C. Kurak and J. McHugh, A cautionary note on image downgrading, in: roceedings of the

IEEE 8th Annual Computer Security Applications Conference, 30 Nov-4 Dec 1992, pp. 153-159.

[27] cf. section 1-133, "Color/Graphics Adapter",page 143 of ibm_techref_v202_1.pdf

[28] R.J Andersen and F.A.P Petitcolas.On the limits of steganography. IEEE Journal of Selected

Areas in Communications,Special Issue on Copyright and Privacy Protection, 16(4):474–481,

1998.

[29] Jiri Fridrich. A new steganographic method for palettebased images. In Proceedings of the

IS&T PICS conference, pages 285–289, Savannah, Georgia, April 1998.

[30] Jiri Fridrich and Du Rui. Secure steganographic methods for palette images. In Inter’l

Workshop on Information Hiding, pages 47–60, 1999.

[31] N.F. Johnson and S. Jajodia. Exploring steganography: seeing the unseen. In IEEE Comput.,

pages 26–34, February 1998.

[32] K.B.Raja, C.R.Chowdary, Venugopal K R, and L.M.Patnaik,” A Secure Image

Steganography using LSB, DCT and Compression Techniques on Raw Images” Department of

Computer Science Engineering, Bangalore 2005 IEEE

[33] N.F. Johnson and S. Jajodia. Steganalysis of images created using current steganography

software. In Proc. the Second Inform. Hiding Workshop LNCS, volume 1525, pages 273–

289.Springer-Verlag, 1998.

[34] D. Kahn. The history of steganography. In R. Anderson, editor, 1st Information Hiding

Workshop, Lecture Notes in Computer Science, volume 1174, pages 1–5. Springer -Verlag,

1996.

[35] Me hdi Kharrazi, Husrev T. Sencar, and NasirMemon. Image steganography: Concepts and

practice. 2004.

Page | 69

[36] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In Advances in

Cryptology: Proceedings of Crypto 83 (David Chaum, ed.), pages 51 – 67. Plenum Press,1984.

[37] J. Fridrich and M. Long, “Steganalysis of lsb encoding in color images,” in Multimedia and

Expo,2000. ICME 2000.2000 IEEE International Conference on, vol. 3, pp. 1279–1282, IEEE,

2000.

[38] Fridrich, J., Goljan, M. and Du, R.: Reliable detection of LSB steganography in color and

grayscale images. Proc. ACM Workshop on Multimedia and Security, Ottawa, ON, Canada, Oct.

5, 2001, pp. 27-30.

[39] Sharp, T.: An implementation of key-based digital signal steganography. Proc. 4th

International Workshop on Information Hiding.Springer LNCS, vol. 2137, pp.13-26, 2001.

[40] Kawaguchi, E. and Eason, R.: Principle and applications of BPCS-Steganography. Proc.

Multimedia Systems and Applications Conference, Boston, MA, USA, November 2, 1998. SPIE

series, vol. 3528, pp. 464-473.

[41] Moskowitz, I., Longdon G. and Chang, L.: A New Paradigm Hidden in Steganography.

Proc. 2000 Workshop on new security paradigms, Ballycotton, Country Cork, Ireland, 2000.

ACM Press, New York, pp. 41-50.

[42] Kurak, C. and McHugh, J.: A Cautionary Note on Image Downgrading. Proc. IEEE 8th

Annual Computer Security Applications Conference. San Antonio, USA, Nov./Dec. 1992, pp.

153-155.

[43] ZHANG, J., COX, I. J., DOERR, G. Steganalysis for LSB matching in images with high-

frequency noise. In Proc. IEEE Ninth Workshop on Multimedia Signal Processing. Chania

(Greece), 2007, p. 385-388.

Page | 70

[44] KER, A. D. Steganalysis of LSB matching in grayscaleimages.IEEE Signal Processing

Letters, 2005, vol. 12, no. 6, p. 441-444.

[45] V. Lokeswara Reddy, Dr.A.Subramanyam, Dr.P. Chenna Reddy, “Implementation of LSB

Steganography and its Evaluation for Various File Formats”, Int. J. Advanced Networking and

Applications 868 Volume: 02, Issue: 05, Pages: 868-872 (2011).

[46] Moskowitz, I., Longdon G. and Chang, L.: A New Paradigm Hidden in Steganography.

Proc. 2000 Workshop on new security paradigms, Ballycotton, Country Cork, Ireland, 2000.

ACM Press, New York, pp. 41-50.

[47] Sharp, T.: An implementation of key-based digital signal steganography. Proc. 4th

International Workshop on Information Hiding, Pittsburgh, USA, April 25, 2001. Springer

LNCS, vol. 2137, pp. 13-26.

[48] Kawaguchi, E. and Eason, R.: Principle and applications of BPCS-Steganography. Proc.

Multimedia Systems and Applications Conference, Boston, MA, USA, November 2, 1998. SPIE

series, vol. 3528, pp. 464-473.

[49] S. Venkatraman, A. Abraham, M. Paprzycki, "Significance of Steganography on Data

Security", International Conference on Information Technology: Coding and Computing

(ITCC'04), Las Vegas, 5-7 April 2004.

[50] CHI-KWONG CHAN, L. M. CHENG,” Hiding data in images by simple LSB substitution”,

Pattern Recognition, 2004, vol. 37, p.469-474.

[51] XIAOLONG LI, BIN YANG, DAOFANG CHENG, TIEYONG ZENG ,”A generalization

of LSB matching”, IEEE Signal Processing Letters,2009, vol. 16, no. 2, p. 69-72.

Page | 71

[52] WEN-NUNG LIE, LI-CHUN CHANG,“ Data hiding in images with adaptive numbers of

least significant bits based on the human visual system”, In Proc. IEEE Int. Conf. Image

Processing. Kobe (Japan), October 24-28, 1999, p. 286-290.

[53] Y. K. LEE, L. H. CHEN,” High capacity image steganographicmodel”,IEE Proc., Vis.

Image Signal Process, 2000, vol. 147, no. 3, p. 288-294.

[54] SHAO-HUI LIU, TIAN-HANG CHEN, HONG-XUN YAO,WENGAO,” A variable depth

LSB data hiding technique in images”, In Proc. 2004 International Conference on Machine

Learning and Cybernetics. Shanghai (China), Aug. 26-29, 2004, vol. 7, p. 3990-3994.

[55] http://docs.oracle.com/

[56] http://docstore.mik.ua/orelly/java-ent/jfc

[57] http://cs.wellesley.edu/~ecom/lecture/swing.html

[58] http://www.cs.ait.ac.th/

[59] http://docstore.mik.ua/orelly/java-ent/jnut/ch26_01.htm

